
CACHARPO:
CO-PERFORMING CUMBIA SONIDERA WITH DEEP ABSTRACTIONS

Luis Navarro Del Angel David Ogborn
 McMaster University McMaster University

 navarrol@mcmaster.ca ogbornd@mcmaster.ca

Abstract

This paper describes Cacharpo, an autonomous agent that serves as an assistant within live coding
performance. Cacharpo uses techniques of Machine Listening and Music Information Retrieval to
“hear” musical parameters made by a human live coder and respond to them by typing code and
making music. The development of Cacharpo addresses the challenge that typing as a physical act can
take excessive time undermining the theatricality of the performance. Cacharpo’s main focus is music
influenced by cumbia sonidera, a genre developed in Mexico and derived from Colombian cumbia.
Cacharpo consists of four subsystems: a low-level feature extractor, an Artificial Neural Network to
identify cumbia roles and other musical parameters, an algorithm to generate SuperCollider code, and
SuperCollider classes providing notations for economical live coding of cumbia sonidera elements.

1 Introduction

Live coding is the practice of making and unmaking software in order to generate expressive material,
such as music and image. Although programming without typing is possible, live coding practice often
relies on typing interfaces, such as the keyboard (TOPLAP 2010). A common challenge in live coding
performance is that typing as a physical act takes time, especially when starting from a blank screen
(Brown and Sorensen 2007). This is not only a problem at the beginning of a musical performance —
melodic, harmonic and/or rhythmic changes also take time, which can result in monotony. Because the
live coder is constantly occupied, typing as fast as they can to produce music, the theatricality of the
performance can be undermined (Brown and Sorensen 2009). To address this challenge, live coders
employ strategies such as collaborative coding and the use of abstractions that let them start quickly
and make quick changes.

Following these traditions, Cacharpo is an autonomous electronic music improviser and live coder that
functions as a co-performer making timely musical changes. Cacharpo generates music and code
through high-level abstractions wrapping SuperCollider’s pattern system and the use of multiple layers
of semantic mapping of low-level audio inputs. Cacharpo’s main focus is to make music influenced by
the cumbia sonidera genre developed in the central part of Mexico and derived from Colombian
cumbia. This paper discusses the motivation, fundamental concepts, and architecture of Cacharpo. The
paper concludes with a discussion of directions for ongoing and future development of the system.

2 Motivation and Fundamental Concepts
2.1 RGGTRN and cumbia sonidera

RGGTRN is a collective whose interests include live coding improvisation influenced by Latin
American dance music and its recontextualization into the realms of electronic dance music. It was

1

mailto:ogbornd@mcmaster.ca
mailto:navarrol@mcmaster.ca

founded in 2012 and it first debuted as a duo named ~ON at the *VIVO* International Symposium in
Mexico City. The members of the collective are distributed across Mexico and Canada and include
Jessica Rodríguez, Marianne Teixido, Emilio Ocelotl and the first author of this paper. RGGTRN
explores music genres such as Reggaeton, Tribal, and Cumbia sonidera.

Cumbia sonidera is derived from Colombian cumbia and was mostly developed during the 1980s in the
central part of Mexico. Its orchestration consists of acoustic instruments (e.g. drum set, timbales,
congas, guiro, brass instruments, etc.), electronic instruments (e.g. electric guitars, electric bass, and
synthesizers), and sound systems characteristic of DJ culture. Precedents for Cumbia sonidera can be
traced from the 1960s onwards with early genres including “Cumbia tropical/tropical Cumbia” and
“Cumbia mexicana/Mexican Cumbia”. Many covers of traditional Colombian cumbia were recorded by
Mexican artists and international record labels during the 1970s reaching the central and northern part
of Mexico as well as the south of the United States. Nevertheless, many of the original composers were
not credited in many of these recordings to avoid paying royalties, perpetuating a false idea that these
compositions were made by Mexican composers (Blanco Arboleda 2012). Despite the latter, it is
important to highlight that cumbia sonidera is a cultural manifestation ingrained in working-class
neighborhoods of Mexico and it is considered a cultural heritage by the communities formed around
this music (Ramírez Cornejo 2012).

Cumbia sonidera can be performed both by DJs alone (e.g. Sonido La Changa and Sonido Rolas) and
by additional musical performers (e.g. Los Ángeles Azules, Grupo Soñador, and Celso Piña). In both
cases, groups of instruments with defined musical roles can be heard. The percussion section are in
charge of the rhythm, bass, keyboard, electric guitar, and brass manage the harmony, and the lead voice
or melody can be provided by a singer or any other melodic instrument. DJs can take part in any of
these musical roles, but their main role is to speak on top of the music, mentioning the name of the
band, sending greetings to the people, making jokes, or even mocking corrupt politicians (Blanco
Arboleda 2012).

Because the members of RGGTRN live in two different countries, each of them often performs solo.
Typing and developing cumbia sonidera roles is difficult under these circumstances as much typing is
required to generate constant changes with no guarantee that they will be timely and dynamic. The
focus of this research project, then, is to introduce an autonomous agent capable of performing, with
one or more members of RGGTRN, the distinct musical roles and elements of the cumbia sonidera
genre. This project aims to increase the theatricality of RGGTRN’s performances and the enjoyment
of its audience.

2.2 Theatricality in live coding

Live coding is about recognizing the conflicts between the human, the machine and the source code as
inherent to the process of creation with automatic systems. For the live coding audience, entertainment
comes not only from the music but also from observing this conflict and resolution. It is the struggle of
the coder when trying to control the machine, and to bend the algorithm, that the audience perceives as
dramaturgical. The live coder, too, feeds on multiple sources of information (i.e. audience, co-
performers or the code itself) which could change the final course of the piece. Live coding
performance, nevertheless, happens in a place of relative safety where unpredictability is calculated and
contained. The amount of liveness in performance, and therefore, the number of theatrical possibilities,
both depend on how secure or unpredictable this place is (Norman 2015).

2

Moreover, the interplay between the coder(s) in-scene, the machine and the audience generates a
unique moment where exact repetition is avoided (Attali 1985; Auslander 2002). Liveness in music —
more variation and less repetition — is difficult to achieve. A live coder needs to type fast, to think
forward to devise the musical ideas and to be able to describe them as code in order to generate quick
but opportune changes. Liveness in music performance depends not only on the amount of security or
unpredictability it has but also on how dynamic and timely are the musical changes that happen within
it.

Typing is constrained by the human body — our fingers have a typing speed limit — and the
discreteness of written language (Ludwig 1983). To provide a meaningful instruction, the coder needs
to write a complete error-free sequence of letters and symbols in order to be properly understood by the
machine. Depending on the length of the instruction and the characters per minute the coder is capable
of, typing can take excessive time. This leads to losing valuable time, depriving the audience of
enjoying melodic, harmonic and/or rhythmic changes in the music and increasing the stability and
monotony of the performance.

2.3 Strategies to address typing constraints

One way to address these constraints is reducing the amount of typing. Strategies to do this include
collaborative and networked coding (Brown and Sorensen 2007; Freeman and Van Troyer 2011; Lee
and Essl 2014a; Lee and Essl 2014b; McKinney 2014; Ogborn 2014), where each member of the group
focuses on fewer tasks, typing less but developing musical layers more deeply. The use of abstractions
is another strategy to reduce the amount of typing. If well conceived and implemented, they enable the
live coder to produce rich musical content with few lines of code. Abstractions made during
performance are often smaller, anonymous, and ephemeral. Abstractions prepared ahead of
performance are potentially longer, detailed, and deeper. On the other hand, abstractions are generally
complex, opaque, and difficult to understand for both the audience and the performer as developing
them involves hiding data.

Autonomous agents (Cope 1987; Eacott 2007; Lewis 2000; Polansky 1975; Roads 1985; Wamser and
Wamser 31996) combine the idea of collaboration and the use of abstractions, therefore becoming
another strategy to reducing typing load. Moreover, through Machine Listening they can mimic
cognitive processes (Collins 2006) helping them interact with a human live coder in ways analogous to
those of human co-performers (McLean and Sicchio 2014; Stowell 2010; Yee-King 2011).

3 Implementation

Cacharpo is an autonomous live coder developed to address these research concerns. Cacharpo “hears”
the music made by its co-performer(s) and responds by generating code and music in SuperCollider.
Machine Listening and Music Information Retrieval provide Cacharpo enough flexibility to adapt to
structures, harmonies, and synthesizers that could be used by the human co-performer (Figure 1).

3

 Figure 1: Co-performing with Cacharpo

Cacharpo’s system consists of four connected subsystems developed specifically for this project: a low-
level audio feature extractor, an Artificial Neural Network (ANN) to identify cumbia roles and other
musical parameters, an algorithm to generate SuperCollider code, and SuperCollider classes providing
notations for economical live coding of cumbia sonidera elements.

The connections between these subsystems were informed by the concept of three-layer mapping
proposed by Hunt and Wanderley (2002). This paradigm was helpful to this project as it encourages the
organization and analysis of the data before its use and highlights that perceptual analysis should
validate the correctness of the mapping. In Cacharpo’s system, a first layer of mapping generates high-
level, “semantic” music features from low-level audio features. In the third layer, high-level “semantic”
descriptions of musical intentions and constraints are mapped on to lower-level behaviours and
variables of a code generation system. The second layer connects first layer outputs and third layer
inputs (Figure 2).

 Figure 2: A flowchart of the system

3.1 Low-level audio feature extractor

This subsystem uses both Machine Listening and Music Information Retrieval (MIR) algorithms
implemented as native functions in SuperCollider. In this subsystem, stereo sound resulting from the
human live coder’s activity is routed to a unit generator (or “Ugen”, i.e. an algorithm that consumes
and/or produces audio signals) which performs a Fast Fourier Analysis to decompose it into a range of

4

frequencies. This spectral information, then, is routed to MIR UGens which calculate the amount of
“brightness” (spectral centroid), the amount of “noisiness” (spectral flatness), when a note begins
(onset detection), and the distribution of the energy in different bands of frequencies (spectral
percentile, high, low and pass-band filters). Additionally, how often the signal intercepts the zero axis
(zero-crossing rate) is calculated from the monophonic audio stream.

Twenty four audio features are continuously extracted at a rate of twenty times per second. Once this
basic analysis is done, this data is sent through Open Sound Control (OSC) messages to an application
that parses and organizes the data to route it to an Artificial Neural Network (ANN) in real-time.

3.2 Artificial Neural Network (ANN) to “hear” musical parameters

To answer Cacharpo’s questions “is a bass playing?”, “is there a melody?”, “which pitches should I
use”, and so forth, multiple ANNs were used. Twenty times per second high-level musical features
calculated by the ANNs are sent into the second layer of mapping where they are then remapped onto
high-level parameters of the third, output layer of the system. These features enable Cacharpo to
identify the presence of cumbia sonidera roles (i.e. rhythm, harmony, and melody), instruments (i.e.
percussions, bass, keyboard, synthesizers), pitch sets, and the amount of “energy” during an ongoing
performance.

The ANNs for this system were developed with Haskell, a pure functional programming language that
has been used in projects connected to algorithmic composition and sound synthesis (Drape 2015;
Hudak 2015; Hudak and Wadler 2007; Quick and Hudak 2013) as well as live coding (McLean 2014;
McLean and Wiggins 2010; Murphy 2016a; Murphy 2016b; Ogborn et al. 2015). ANNs are possible to
develop using SuperCollider as demonstrated by the SCMIR library (Collins 2011). Haskell, however,
has valuable characteristics — leading to robust, consistent, and reusable software — such as the
possibility to prove program properties, step-by-step evaluations and calculations, symbolic testing, and
an exhaustive debugging feedback system (Thompson 1999). In addition to this, intuition suggested
that the training time, the usage of RAM, and the management of big sets of data has been more
efficient using this programming language.

To train the ANNs, an offline training (i.e. using a static dataset) was performed with data collected
from sound recordings of Cumbia sonidera SuperCollider performances, featuring both sampled and
synthesized sounds. Each recording lasted between three to six seconds. For the ANNs to be able to
include information from the past two seconds in their calculations the input to the network consisted
of the current low-level audio features as well as forty delayed versions of the same low-level features.
Audio features extracted at twenty times per second were stored in lists including information from
forty frames behind (Table 1).

Table 1. ANNs used by Cacharpo, their audio features and, input values.

Network
Name

Network task N° of audio
features used

Audio features used N° of input
training
sets used

Melody Identify the role of
melody

9 Spectral centroid, spectral flatness,
zero-crossing rate, onset detection,
spectral percentile, high, low, and

1885

5

band-pass filters

Teclado Identify the role
harmony

9 Spectral centroid, spectral flatness,
zero-crossing rate, onset detection,
spectral percentile, high, low, and
band-pass filters

1400

Bajo Identify the role of
the bass

9 Spectral centroid, spectral flatness,
zero-crossing rate, onset detection,
spectral percentile, high, low, and
band-pass filters

1407

Kick Identify the role of
the rhythmic section

9 Spectral centroid, spectral flatness,
zero-crossing rate, onset detection,
spectral percentile, high, low, and
band-pass filters

1362

Guira Identify the role of
the rhythmic section

9 Spectral centroid, spectral flatness,
zero-crossing rate, onset detection,
spectral percentile, high, low, and
band-pass filters

1882

Cowbell Identify the role of
the rhythmic section

9 Spectral centroid, spectral flatness,
zero-crossing rate, onset detection,
spectral percentile, high, low, and
band-pass filters

1997

Pitch
recognition

Identify pitches 12 Band-pass filters 2280

Energy Identify the amount
of energy of the
ongoing performance

3 Loudness, onset detection, and
high-pass filter

435

For the ANNs to synchronously identify high-level musical parameters, desired output parameters were
also stored in the training file. These desired outputs described when a “melody”, “keyboard”, “guiro”,
“cowbell”, “kick”, and/or “bass” were present in the music, as well as the individual pitches of the
chromatic scale, and the energy of the ongoing performance. For each sound recording, these desired
outputs were stored twenty times per second in arrays with no delay added (Table 2).

Table 2. Desired outputs used to train Cacharpo’s ANNs.

Network
Name

N° of desired
outputs

Purpose of the desired outputs

Melody 1 Identify three synthesizers used to make melodies.

Teclado 1 Identify two synthesizers used to make chords.

Bajo 1 Identify one synthesizer used to make a bass line.

Kick 1 Identify one sample used to make a kick.

Guira 1 Identify one synthesizer used to make a guira.

6

Cowbell 1 Identify one synthesizer used to make a cowbell.

Pitch
recognition

12 Identify pitches of the chromatic scale in 4 octaves.

Energy 1 Identify high, Mid and low levels of energy.

The hnn Haskell library (Mestanogullari and Johnson 2009) was used to implement the ANNs. Based
on the size of the lists generated, the structure of the ANNs used to identify roles and instruments
resulted in three hundred sixty input neurons and one output neurons for each of them. The ANN used
to recognize pitches resulted in four hundred eighty input neurons and twelve output neurons. The
energy ANN resulted in one hundred twenty input neurons and one output neuron. One hidden layer of
forty neurons was sufficient to convert low-level inputs into high-level outputs (Figure 3). The
algorithm used for training was feedforward and the method of training was backpropagation, both
frequently used to perform tasks such as the categorizations required for this project.

During training, the adaptability of the ANNs was measured through cross-validation techniques. This
measurement was important because it calculates how well the ANNs will perform under
circumstances different than the ones provided in the training samples. Cross-validation was performed
with data collected from sound recordings of Cumbia sonidera SuperCollider performances featuring
the same sampled and synthesized sounds of the training data (Table 3). Using the same sounds to
cross-validate the training was necessary as the synthesizers used for this project are hand-made and
idiosyncratic (Magnusson 2010).

 Table 3. Cross-validation results of Cacharpo’s ANNs.

Network Name Quadratic error of training
samples

Quadratic error of non-
training samples

Melody 0.0184% per sample 0.5873% per sample

Teclado 0.0863% per sample 0.3756% per sample

Bajo 0.0072% per sample 0.3595% per sample

Kick 0.0070% per sample 0.4264% per sample

Guira 0.0954% per sample 0.3429% per sample

Cowbell 0.0538% per sample 0.2833% per sample

Pitch recognition 0.0023% per sample 0.016% per sample

3.3 An algorithm to generate SuperCollider code

Once Cacharpo has “heard” its first sound, a subsystem to generate SuperCollider code is activated. In
this system, high-level “semantic” musical intentions and constraints are mapped on to lower-level
behaviours and variables of a code generation system. Cacharpo, then, decides which cumbia roles and
instruments it will play and in which key. For instance, if there is already a bass playing, then, it can
choose to make a melody, or to play an instrument from the rhythmic section like a kick or a cowbell.

7

Cacharpo’s generation of code is guided by a finite-state machine (Gill 2007). There are three states in
the machine: “waiting”, “deciding”, and “typing” (Figure 3). “Waiting” happens when the system has
been initialized and is waiting for input. It also happens after Cacharpo has finished typing, has
evaluated the code in SuperCollider, and is waiting for the audience to hear its result.

“Deciding” happens when the system has been initialized and has already been waiting for five
seconds. If nothing has been heard still, then it decides to wait again. Conversely, if something has been
heard, it presents itself, picks a cumbia role, and types and plays it. After the system has typed its first
role and a period of time has passed for the audience to hear it, Cacharpo can decide to pick another
role or to make changes to the one(s) already written. If the density and the loudness of the music are
decreasing, Cacharpo decides to gently start stopping the music and deleting the code.
“Typing” happens after any decision (“wait” not included) has been taken. Decisions taken are
translated to typing actions (i.e. move the cursor, insert, replace, and/or delete a character) in order to
visualize them in SuperCollider. These actions are sorted and queued by the algorithm for Cacharpo to
know what, when and how to type.

 Figure 3. State transition diagram.

3.4 Notations for economical live coding of cumbia elements

Melodía, Teclado, Bajo, and Ritmo, are a set of miniature SuperCollider classes that function as an
interface for quick generation of live coded music and are both used by the human live coder and the
code generating agent. Each one of them can produce a basic layer of music, such as melody, harmony,
or rhythm. Moreover, they are intended to represent music roles within the genre of Cumbia sonidera.

They were developed so that the audience would have to wait less in order to hear an initial cumbia
sound. These classes include methods that wrap calls to underlying Pbindef methods where arguments
such as instrument, pitch, amplitude, attack, release, duration, panning, and strum can be accessed and
modified. An example of calling methods from the Ritmo and Bajo classes is provided below (Figure
4).

8

 Figure 4. The Ritmo and Bajo SuperCollider classes.

4 Discussion and Future Work

Cacharpo reduces the number of tasks and the amount of typing the human coder needs to do by taking
musical roles, typing code, and making music. It also potentially increases the attentiveness of the
audience by making consistent and timely changes to the music. The system does not require direct
input from the human coder, such as chat messages or spoken directions, and its structure is simple and
easy to maintain. Implementing an “ecology” of ANNs has enabled them to perform more specific
tasks (i.e. cumbia roles, pitch recognition, and “energy” detection), therefore improving their accuracy.
Long-term future development includes increasing the adaptability of the system to sounds, structures,
and harmonies of music genres such as Reggaeton and Tribal. This will be done by training more
ANNs, developing more SuperCollider music notations, and expanding the decisions the generative
typing system can make.

Cacharpo has a limited way of sensing what is happening during the ongoing performance. Co-
performing with it has required the author of this paper to be attentive to its decisions in order to make
cohesive music. This has resulted in performances in which following Cacharpo has been necessary
rather than evenly co-performing with it. One way to address this will be to increase the
communication between the human live coder and Cacharpo by incorporating additional meaningful
feature extraction for the system to sense the direction of the performance (e.g. "mood", rhythmic and
melodic density).

The development and conceptual framework of Cacharpo addresses a need to humanize software that
can create on its own. The latter is an ongoing exploration in the emerging field of Musical
Metacreation (Eigenfeldt and Pasquier 2012). Ways of expanding the personalities of the system
described in this paper will be explored further. For example, an ANN could perform an analysis of the
human performer’s input code, which could be useful for Cacharpo to recognize particular live coding
styles and patterns from different live coders. This would enable Cacharpo to choose between using
multiple modes of live coding styles (i.e. JITLib style, pattern style) and be aware of other useful
metadata.

The further development and evolution of this system will potentially enable it to accompany and assist
the live coding musician, perhaps even for decades, like the members of an ensemble. This has
happened already with systems such as George Lewis’ Voyager, which has been active since 1986
(Lewis 2000). To do this, continuous training of ANNs will be required in order to keep the system
learning.

9

//A kick drum, a cowbell, and a guiro playing a basic cumbia pattern.
 Ritmo.toca (bomboDb:0.75, campanaDb:0.5, guiroDb: 0.25);

//A bass pattern playing C as a quarter note and E and G as eighth notes.
Bajo.toca (nota:Pseq([60, 64, 67], inf), dur: Pseq ([1, 0.5, 0.5], inf));

Although Computer Music and Artificial Intelligence has been used to emulate well-known styles of
famous music composers with great results (Cope, 1987), this project aimed to emulate the behavior of
the non-famous — almost anonymous — human live coder. Moreover, it was not intended to emulate
any particular live coding composer or individual musician’s style. Informal showcasing of videos
performing accompanied by Cacharpo revealed that people are neither surprised nor disappointed by
seeing code and hearing music produced by an autonomous agent. Further testing under dance floor
conditions is required.

5 Links

A video of Cacharpo co-performing with a human live coder is available at the following URL:
https://vimeo.com/227332172.

References

Attali, Jacques. 1985. Noise: The Political Economy of Music, translated by B. Massumi.
Minnesota: University of Minnesota Press.
Auslander, Philip. 2002. Liveness: Performance in a Mediatized Culture.

Routledge.
Blanco Arboleda, Darío. 2012. “Los Bailes Sonideros: Identidad y Resistencia de

Los Grupos Populares Mexicanos Ante Los Embates de La Modernidad.”
In Sonideros En Las Aceras, Véngase La Gozadera, edited by Tumbona Ediciones, 53–73.
Mexico: El Proyecto Sonidero.

Brown, Andrew R., and Andrew C. Sorensen. 2007. “Aa-Cell in Practice: An
Approach to Musical Live Coding.” In Proceedings of the International
Computer Music Conference, ICMC 2007, 292–99.

———. 2009. “Interacting with Generative Music Through Live Coding.”
Contemporary Music Review 28 (1), 17-29.

Collins, Nick. 2006. “Towards Autonomous Agents for Live Computer Music:
Realtime Machine Listening and Interactive Music Systems” (Doctoral
Dissertation). University of Cambridge, UK. http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.65.2661&rep=rep1&type=pdf.

———. 2011. “SCMIR: A Supercollider Music Information Retrieval Library.” In
Proceedings of the International Computer Music Conference, ICMC
2011.

Cope, David. 1987. “Experiments in Musical Intelligence.” In Proceedings of the
International Computer Music Conference, ICMC 1987.

Drape, Rohan. 2015. “The Hsc3 Package.” https://hackage.haskell.org/package/
hsc3.

Eacott, John F. 2007. “Contents May Vary: The Play and Behaviour of Generative
Music Artefacts” (Doctoral Thesis). University of Westminster, UK.
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=968ADEB891732CA15B4EDF26
29F5F3A6?doi=10.1.1.101.8967&rep=rep1&type=pdf.

10

https://vimeo.com/227332172

Freeman, Jason, and Akito Van Troyer. 2011. “Collaborative Textual
Improvisation in a Laptop Ensemble.” Computer Music Journal 35 (2).
The MIT Press: 8–21.

Gill, Arthur. 2007. Introduction to the Theory of Finite-State Machines. New
York: McGraw-Hill.

Hudak, Paul, John Hughes, Simon Peyton Jones, and Philip Wadler. 2007. “A
History of Haskell: Being Lazy with Class.” In Proceedings of the Third
ACM Sigplan Conference on History of Programming Languages, ACM 2007.

Hudak, Paul. 2015. “The Haskell School of Music”. Yale University.
Hunt, Andy, and Marcelo M. Wanderley. 2002. “Mapping Performer Parameters

to Synthesis Engines.” Organised Sound 7(2). Cambridge University
Press: 97–108.

Lee, Sang Won, and Georg Essl. 2014a. “Communication, Control, and State
Sharing in Networked Collaborative Live Coding.” In Proceedings of the
International Conference on New Interfaces for Musical Expression, NIME 2014, 263–68.

———. 2014b. “Models and Opportunities for Networked Live Coding.”
Live Coding and Collaboration Symposium ’14, University of Birmingham, UK.

Lewis, George. 2000. “Too Many Notes: Computers, Complexity and Culture in
Voyager.” Leonardo Music Journal 10. Cambridge University Press:
33–39.

Ludwig, Otto. 1983. “Writing Systems and Written Language.” In Studies and
Monographs 24, edited by Florian Coulmas and Konrad Ehlich, 31–44.
New York: Mouton Publishers.

Magnusson, Thor. 2010. “Designing Constraints: Composing and Performing
with Digital Musical Systems.” Computer Music Journal 34 (4): 62–73.

McKinney, Chad. 2014. “Quick Live Coding Collaboration in the Web Browser.”
In Proceedings of the International Conference on New Interfaces for
Musical Expression, NIME 2014, 379–82.

McLean, Alex. 2014. “Making Programming Languages to Dance to: Live
Coding with Tidal.” In Proceedings of the 2nd ACM Sigplan International
Workshop on Functional Art, Music, Modeling & Design, ACM 2014, 63–70.

McLean, Alex, and Kate Sicchio. 2014. “Sound Choreography <> Body Code.”
In Proceedings of the 2nd Conference on Computation, Communication,
Aesthetics and X, xCoAx 2014, 355–62.

McLean, Alex, and Geraint Wiggins. 2010. “Tidal–pattern Language for the Live
Coding of Music.” In Proceedings of the 7th Sound and Music Computing
Conference 2010.

Mestanogullari, Alp, and Gatlin Johnson. 2009. “The Hnn Package.”
https://hackage.haskell.org/package/hnn.

Murphy, Tom. 2016a. “The Midair Package.”
http://hackage.haskell.org/package/midair.

———. 2016b. “The Vivid Package.” https://hackage.haskell.org/package/vivid.
Norman, Sally-Jane. 2015. “Live Coding and Embodied Action in Performance

Contexts.” Speech, International Conference on Live Coding 2015, Leeds, UK,
July 2015. https://www.youtube.com/watch?v=2cHMbGHjXIA.

11

Ogborn, David. 2014. “Live Coding in a Scalable, Participatory Laptop
Orchestra.” Computer Music Journal 38 (1). The MIT Press: 17–30.

Ogborn, David, . 2015. “Estuary.” https://github.com/d0kt0r0/estuary.
Polansky, Larry. 1975. “Four Voice Cannons.”

http://eamusic.dartmouth.edu/~larry/fvc/.
Quick, Donya, and Paul Hudak. 2013. “Grammar-Based Automated Music

Composition in Haskell.” In Proceedings of the First ACM Sigplan Workshop on Functional
Art, Music, Modeling & Design, ACM 2013.

Ramírez Cornejo, M. 2012. “Entre Luces, Cables Y Bocinas: El Movimiento
Sonidero.” In Sonideros En Las Aceras, Véngase La Gozadera, edited by
Tumbona Ediciones, 99–122. Mexico: El Proyecto Sonidero.

Roads, Curtis. 1985. “Research in Music and Artificial Intelligence.”
ACM Computing Surveys CSUR 17 (2). ACM:163–90.

Stowell, Dan. 2010. Making Music Through Real-Time Voice Timbre Analysis:
Machine Learning and Timbral Control (Doctoral Dissertation). School of
Electronic Engineering; Computer Science, Queen Mary University of
London. http://www.mcld.co.uk/thesis/.

Thompson, Simon. 1999. Haskell: The Craft of Functional Programming (2nd
Ed). Addison Wesley.

TOPLAP. 2010. “ManifestoDraft.” https://toplap.org/wiki/ManifestoDraft.
Wamser, Christian. A., and Carl C. Wamser. 1996. “Lejaren a. Hiller, Jr.: A

Memorial Tribute to a Chemist-Composer.” Journal of Chemical Education
73 (7). The MIT Press: 601–7.

Yee-King, Mathew J. 2011. “Automatic Sound Synthesizer Programming:
Techniques and Applications” (Doctoral Dissertation). University of
Sussex, UK.

12

